First-order relativistic hydrodynamics
1S stab\e




What is relativistic hydrodynamics?

If you don't know anything about relativistic hydrodyna-
mICS, you can try learning about it from classic textbooks.

The classics: Hydrodynamics is the dynamics of
conserved densities, so the equations must include

0, TP =0, 0,J%=0

Question: What exactly are these T, Jo?

That's where the classic textbooks will differ.



Open Landau-Lifshitz “Fluid mechanics”

T = pn*” + (e+p)utu” + 71,

J* = nut + ",

T s transverse & traceless, contains the viscosities
V" s transverse, contains charge conductivity

Open Weinberg™ “Gravitation and cosmology”

T = pn"” + (e+p)utu” + (¢"u”+q"u?) + T,

J* = nut,

PV 1S transverse & traceless, contains the viscosities
q" is transverse, contains heat conductivity

“This formulation of hydrodynamics is due to Eckart (1940)



The equations look different, so what?

Let's shut up and calculate: solve for linear perturbations
of the thermal equilibrium state. Easy!

Both Landau-Lifshitz’ and Eckart’s equations predict that:
a) thermal equilibrium does not exist

D) things propagate faster than light

Hiscock, Lindblom, 1984
Hiscock, Lindblom, 1987



https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1103/PhysRevD.35.3723

What exactly is the problem?

Perturbations e-wt+kx golve hydro equations: w=w(k)

Gapless modes: w(k—0)=0, b/c of conserved charges.
These correspond to normal hydrodynamics (sound etc).

But the equations also predict gapped modes w(k—0)=0,
moreover with Im(w)>0. These are unphysical modes.

These “take”™ modes are outside of the validity regime of
the low-energy hydro approximation. These are UV modes.

But if you want to actually solve the hydro equations In
practice, these unphysical modes ruin predictability:
cutoff-scale physics messes up the infrared behavior.



How is the problem fixed?

S0 the classic-textbook hydrodynamics is not what you
solve In practice e.g. to study the quark-gluon plasma.

Most popular fix is the Israel-Stewart theory: the hydro
equations are coupled to extra UV degrees of freedom,
which in turn Kill the unphysical UV modes.

These extra degrees of freedom are the dynamical stresses
and heat fluxes, in addition to the dynamical T, ue, .

The extra degrees of freedom of the Israel-Stewart theory
play the role of a UV regulator. Note that in the non-
relativistic Navier-Stokes eg-s, no UV regulator is needed.



Other regulators?

Can one find a regulator of hydrodynamics that does not
involve introducing extra UV degrees of freedom?

E.g. in field theory, the Pauli-Villars regularization introdu-
ces extra UV degrees of freedom, but dimreg does not.

In a CFT, it is possible to have a sensible relativistic hydro-
dynamics whose only dynamical variables are T and ue,

and no extra UV degrees of freedom.
Bemfica, Disconzi, Noronha, arXiv:1708.06255

Claim: Regardless of CFT, there is a sensible relativistic
hydrodynamics whose only variables are T, u9, y, and no
extra UV d.o.f. You need to choose a suitable out-of-

Tk ' LI PK, arXiv:1907.08191
equmbrlum deflnlthn Of T’ uCl, U Bemfica, Disconzi, Noronha, arXiv:1907.12695



https://arxiv.org/abs/1708.06255
https://arxiv.org/abs/1907.08191
https://arxiv.org/abs/1907.12695

Two pillars of classical hydrodynamics

Symmetry: 9, T[T, v, 1] =0, O JJYT,u™, u] =0

Note: T, J* are always well-defined microscopically.
But: T, u™, it are only well-defined in equilibrium.

There are many ways to define T, u”, 1 out of equilibrium.
'his Is why Landau-Litshitz and Eckart’'s eg-s are different.

Derivative expansion: Locality, as in any effective theory

TP, J* = 0(0°) + O(0") + O(8*) + . ..

Both Landau-Lifshitz and Eckart equations only keep O(01)
terms. This is the physics of viscosity and heat conduction.



To repeat:

n general, out of equilibrium, the notions of “local

rest frame”, “local isotropy” etc are ambiguous,
and are a matter of pure convention/taste.




In rest frame: J° = charge density, J' = charge current,
0 = energy density, T = pressure, T = stress,
0F = momentum density/energy current

Write covariantly:  J* = Nu* + J*
TH = Eutu” + PAM + (QMu” + QYu') + TH

AP = ¢ 4 u*? spatial projector, Ju=Qu=T-u=0 T,%=0

Hydrodynamics: &, P, Q% T, N, 7% must be written
in terms of T,uru



T = Eur'u” + PAM + (OFu” + QYul) + THY, JH = Nut + J*

\/

derivative expansion in terms of
scalars made out of T, u®, y, da

derivative expansion in terms of
transverse vectors made out of T, u?, Y, dq

|

derivative expansion in terms of
transverse traceless tensors made out of T, u®, Y, Oq




O(0) scalars: Oy\u® w* T  uw Ox(/T)
O(0) transverse vectors: u*o ut  AP*ONT — A*05(u/T)

O(0) transverse traceless tensors: "

Such terms are of course not new. The new thing is to
understand their implications for stability and causality.




Simple analogy: EFT

1) I[dentity the low-energy variables

2) Write down all the terms

allowed by the symmetry,

3) Do this up to a given dimension, €.g.:

S = Jd“x <a((3ﬂ(p)2 + bp? + C(p4>

4) Constrain the coefficien

'S a,b,c SO that the physics

IS sensible, e.g. ¢ < 0 fo

r stability of the vacuum



1)

Do the same in hydro

|dentify the low-energy variables: T, ux, u

Write down all possib

relations consistent wi

e terms In the constitutive
th the symmetry

Do this up to a given order (say, 1-st order) in the

derivative expansion

Constrain the coefficients so that the physics is
sensible, e.g. demand stability of equilibrium



Constitutive relations

T = Eur'u” + PAM + (OFu” + QYul) + THY, JH = Nut + J*

Write down every possible term, with up to one derivative:

E=e+eT/T +ea0ru + e300 (/T + O(8?), T =uo\T
: ) N 5 u* = uro\ut
P=p+mT/T + mo\u” + wsu 0xr(u/T) + O(97),
QM = 010t + 05 /T AP O\T + 03AF 0y (1) T) + O(9?)

TH = o™ + O(&P)
N =n+ VlT/T + voOhu™ + uguAa,\(u/T) + 0(07),

TH = it + 42 /T APO\T + 3 AP 05 (1/T) + O(0?)



Constitutive relations

T = Eur'u” + PAM + (OFu” + QYul) + THY, JH = Nut + J*

Write down every possible term, with up to one derivative:

E {HEW /T Heapru +Ep O (1/T) + 0(97). T = O\T
P {p )T /T +{mpau +{mu o (1/T) + 0(5°), i = o
Q" =(O)i +{B2) T A O\T +{BIA 0 (1/T) + O(5?)
T = {npt + 0(0?),

N =)'/ T +{uaPu +Hogu ox(u/T) + O(6%)

T =()i +o) T A ONT +(3 A0 (1) T) + O(9°),

: perfect fluid,: one-derivative “transport coefficients”




Connection to the Landau frame

Redefine hydro fields by O(0) corrections:

L

u' =ut+ou’, T, =T+06T, u, =u+ou

Constitutive relations:

& = e(T, p)

N = n(T, p)

Q" = Q*(dT, ou, ou)

L andau frame:

choose 67T, du, ou
such that

%L — €(TL9 luL) ’
/VL = n(1;, ﬂL) .
Q" =0




Connection to the Landau frame

Redefine hydro fields by O(0) corrections:

w' =u'+out, T, =T+0T, p, =pu+ou

Landau frame amounts to choosing:

on oe on oe
Q" Je o ~ T3, ~fe 57 Y57

P = — —
ou €+p ’ ol e on e on 5” Ooe on Ooe on

0T ou ou oT 0T ou ou oT

o




Connection to the Landau frame

+ 0(0%)

1
ut = ut <Hlb't” + 0,

A”“daT>
€+ p

pappes (&, T/T + &,0-u) + O(0°)

Can loosely interpret 61, €1 as relaxation times to
Landau-frame variables.



Connection to the Landau frame

Conversely, if you happen to know u”, T, from the exact T
for uncharged fluids, then you find u#, T by:

A/iaaa TL
TL

1
ut = ut (6’11}4 + 6,

>+O((32)
€+p

paypes (&7, /T, + &,0-u;) + O(0%)



Landau frame

Use field redefinitions and on-shell relations to push all
red terms except 12, n, yato O(02).

T = Eur'u” + PAW + (OFu” + OQYul) + THY, JH = Nut + JH

& (KT HFEPru* HEG O (1/T) + 0(°),
P (PR /T +apau* Hpdu on(w/T) + 0(°). T'=w \T

M= 1o ut
0" Wi YT AONT HPAN N (1/T) + 0@, T T
T = {pp™ + 0(5?).

N (ol /T Hpghru +34 05 (/) + 0(9%),

T" =[] +DRY/ T AP ONT +(aA 05 (1/T) + O(9?),




Eckart frame

Use field redefinitions and on-shell relations to push all
red terms except 12, n, 61=062 to O(02).

T = Eur'u” + PAW + (OFu” + OQYul) + THY, JH = Nut + JH

& H(HKI /T H5gpru* Hpdfr*or(/T) + 0(9°)
P :@@%ZT'/T +(maPu +®/\fh(u/ T)+0(9%), T'=u T
O :ﬂ +T APO\T +@A“/\8A(M/T) + 0(07), i = Oy
T T
N =@+@@/T +@@Au/\ +@Ef&\(u/ T)+ 0(9%),

T" =[] +DRY/ T AN ONT +[A 0, (1/T) + O(9?),




The fact that you can push most O(d1) terms to O(02)
doesn’t mean that you have fo. Let us keep all of
them for now i.e. use the “most general frame”.




Does it matter?

The choice of frame is not important from the point of view of
the derivative expansion, or for classitying the transport
coefficients. However, it is important from the point of view of
the hydro equations themselves.

After all, the hydrodynamic equations (with the constitutive
relations truncated at one-derivative order), when written in
different frames, give rise to different differential equations.

The choice of frame may potentially affect such things as the
well-posedness of the initial value problem for these partia
differential equations, or lead to fictitious instabilities of the
equilibrium state.




Now let's talk about the constraints on the
1-derivative transport coefficients



Constraints: extensivity in equilibrium

T = Eur'u” + PAM + (OFu” + QYul) + THY, JH = Nut + J*
E =€+ elT/T + g90hu’ + egu)‘(?)\(u/T) + 0(07), T = u 05T
: u* = urO\ut
P=p+mT/T + mdru* + mu 0\ (u/T) + O(9?),
QF = 010" + 02 /T AP O\T + 05A* 05\ (1/T) + O(9?)
T = o + 0(?).
N =n+unT/T + rd\u* + v3u0x(u/T) + O(0?),

TH = it + 3o /T AFAONT + 3 A* 05 () T) + O(9?),

Extensivity at O(d%) : e = —p+T0p/OT + 10p/Ou, n = 0p/op

Extensivity at O(0') : 01 =02, 11 =12



Constraints: positive viscosity and conductivity

T = Eur'u” + PAM + (OFu” + QYul) + THY, JH = Nut + J*
E=ec+eaT/T + e20\u™ + e3u0x(p/T) + O(6?), T = u*O\T
P = pt mT /T + modyu® + w0y (u/T) + 0@, wOnu”
QF = 010" + 02 /T AP O\T + 05A* 05\ (1/T) + O(9?)
TH = —not” + 0(0?),
N =n+uT/T + vyd\u’ + vsu’dx(n/T) + O(0%),
T =i + v2/T APONT + v A" 05\ (1/T) + O(9?),
Genuine O(0) transport coefficients:
Shear viscosity: 7
Bulk viscosity: combination of €123, m123, V123
Charge/heat conductivity: combination of y13, 813



Now comes the most important slide



Constraints: stability and causality

In the space of €123, M123, 123, V123, Y123, N there i1s a sub-
space where hydro is stable and causal. It is necessary to
keep €1, m1, B4, v1, Y1 NON-zero, positive, and bounded from

belOW. PK, arXiv:1907.08191
Bemfica, Disconzi, Noronha, arXiv:1907.12695



https://arxiv.org/abs/1907.08191
https://arxiv.org/abs/1907.12695

Minimal stable and causal uncharged hydro
™ = u'u*” + LA*" + Q"*u* + Q*u* + T+

& =c+eTIT+ 000

P =p+m T/T + (—Z_,’+ VSZ(JZ'I — vszel)) 0-u + O(0%)
: N 2
o' =6 u’“‘+?N‘ 0, T | + O(0°)

T = — o' + 0()

hree parameters &(T), = (T),(T) besides n(T),(T)



Linear perturbations, uniform moving fluid

Stability: Imw(k) <0

. Re w(k
Causality:  lim e w(k)

1
k— oo k <

Lorentz covariance gives no simple relations between w(k)
at v=0 and w’(k") at v=0 unless w(k) is linear.

It causality is not satisfied for the fluid at rest, then the
uniformly moving tluid will have unstable modes.



Example: shear waves in a moving fluid, small k

w(k) = k-v i V1-v2 (k% — (k-v)?) 4+ O(k%)

K €E+ P

gapless, stable

(k) — i(e+p)V1—v?2 O] e

K nv — 0

E.g. the Landau-Lifshitz frame sets 6=0, predicts instability

gapped, stable for 6>n only!



Example: shear waves in a static fluid, large k

o(k) = £ (n/6)"* | k|

;

causal for 8>n only!

E.g. the Landau-Lifshitz frame sets 6=0, predicts acausality



Stable and causal frames for uncharged fluids

20|

157

Plot for

T /s = 3/v3
origin is excluded

I

0 !

4 .
Vs 3'7

PK, arXiv:1907.08191



https://arxiv.org/abs/1907.08191
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Entropy current

on-shell
TS* = put — TH 0 SH l— T o o
canon — P U, , pPcanon — T (1) Tu 7
\ one-derivative
contribution
on-shell
l N2
T A\ 2 (AH*9,T)(A,30°T) e v
T0,S5non = — €1 (T) — 9 ((%\u ) — 6 T2 = — Orutu, + 50“,/0“
T WP A, 00T
— (62 -+ Wl)?a)\uA — (91 -+ (92) 'I} | 0(83)

Positive only if
;7>O, 91=92<O, €1<O, 7T2<O, 481ﬂ2_(€2+ﬂ1)2>o @



However recall that we are only computing 0,SH on-shell,
and up to O(02) only. On-shell we have:
A NOMT

T .
7= —v? Ohu™ + 0(0?%), - = —Uy, + 0(0%),




Entropy current

on-shell

l
TS, .= put —T"u , 20,5 —=—T"0 (ﬂ)

canon pu~ canon (1) H T

\

one-derivative
contribution

on-shell

2
Taﬂsébanon — (_7-‘-2 + U? (€2+ﬂ-1) _ Uglgl) (aXLLA) T ggw/awj + 0(83)

\> this combination is C

Positive only if >0, >0 (&)
t had to be like this b/c on-shell and up to O(02) the theory
S just the standard first-order hydro




Conclusions

Do what we've always been taught to do in field theory:
write down every term allowed by the symmetry, then
you will find a 1-st order relativistic hydro that is stable
and causal, and only uses the same variables as the
non-relativistic Navier-Stokes eqguations.

| only talked about linear stability and causality. One can
show that the non-linear hydro equations in the general

frame are causal, well-posed, and can be coupled to
EinStein,S equatiOnS Bemfica, Disconzi, Noronha, arXiv:1907.12695



https://arxiv.org/abs/1907.12695

What’s next for the stable-frame hydro?

Viable numerical schemes?

Heavy-ion applications?

How does it compare with the Israel-Stewart hydro?
Compare the new hydro to AdS/CFT evolution of THv?

What happens at O(02)? See also David’s talk yesterday.



Thank you!



